MIIVefa and usage examples

library(MIIVefa)
#> This is version 0.1.2 of MIIVefa.
#> MIIVefa is BETA software! Please report any bugs.
library(mnormt)

Setting up MIIVefa

The Basics

MIIVefa is data-driven algorithm for Exploratory Factor Analysis (EFA) that uses Model Implied Instrumental Variables (MIIVs). The method starts with a one factor model and arrives at a suggested model with enhanced interpretability that allows cross-loadings and correlated errors.

Running MIIVefa

1, Prepare your data.

  • The input dataframe should be in a wide format: columns being different observations and rows being the specific data entries.

  • Column names should be clearly labeled.

2, Installing MIIVefa.

  • In the R console, enter and execute ‘install.packages(“MIIVefa”)’ or ‘devtools::install_github(“https://github.com/lluo0/MIIVefa”)’ after installing the “devtools” package.

  • Load the MIIVefa by executing ‘library(MIIVefa)’ after installing.

3, Running miivefa.

  • The only necessarily required input is the raw data matrix.

  • All 4 arguments are shown below.

  • ‘sigLevel’ is the significance level with a default of 0.05. ‘scalingCrit’ is the specified criterion for selecting the scaling indicator whenever a new latent factor is created and the default is ‘sargan+factorloading_R2.’ And ‘CorrelatedErrors’ is a vector containing correlated error relations between observed variables with a default of NULL.

miivefa(
  data = yourdata,
  sigLevel = 0.05,
  scalingCrit = 'sargan+factorloading_R2',
  correlatedErrors = NULL
)

Output of miivefa.

  • The output of a miivefa object contains 2 parts:

  • 1, a suggested model, of which the syntax is identical to a ‘lavaan’ model. Accessible via output$model.

  • 2, a miivsem model fit of the suggested model. The suggested model is run and evaluated using ‘MIIvsem’ and all miivsem attributes can be accessed. Accessible via output$fit.

Simulation Examples

We now demonstrate the usage and performance of MIIVefa across different conditions using three simulations and three empirical examples.

Simulation 1: Identifying crossloadings

We first demonstrate the ability of MIIVefa to recover the true DGM even for complicated data structures. The simulation example consists of a total of 20 observed variables on 4 latent factors. While each factor contains 5 primary variables that load on each, there are two variables (x15 and x20) that also crossload on two factors. The code to generate this simulation example is:

seed <- 1235
#generate latent factor values
eta <- rmnorm(n=500, 
              mean = c(0,0,0,0), 
              varcov = matrix(c(1,.5, .5, .5,
                                .5,1, .5, .5,
                                .5, .5,1, .5,
                                .5, .5, .5,1), nrow = 4))
#generate errors
seed <- 1235
e <- rmnorm(n=500,
            varcov =  diag(.25, nrow = 20))
lambda <- cbind(c(1, .8, .75, .7, .65, rep(0,9), .4, rep(0,5)),
                c(rep(0,5), 1, .8, .75, .7, .65, rep(0,9), .3),
                c(rep(0,10), 1, .8, .75, .7, .65, rep(0,5)),
                c(rep(0,15),  1, .8, .75, .7, .65))

rep <- 500
#obtain observed variable values
sim1 <- eta %*% t(lambda) + e
#create column names
colnames(sim1) <- paste0("x", 1:ncol(sim1))
#make it a data frame
sim1 <- as.data.frame(sim1)

And we run MIIVefa opting for a significance level of .01.

miivefa(sim1, .01)
#> $model
#> [1] "f1=~x6+x7+x8+x9+x10+x20\nf2=~x1+x2+x3+x4+x5+x15\nf3=~x16+x17+x18+x19+x20\nf4=~x14+x11+x12+x13+x15"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    500
#> Number of equations                                                        16
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     x6                1.000                                                  
#>     x7                0.771    0.029   26.475    0.000   18.214   17    0.375
#>     x8                0.804    0.028   29.061    0.000   14.554   17    0.628
#>     x9                0.680    0.029   23.454    0.000   14.163   17    0.656
#>     x10               0.687    0.028   24.780    0.000    8.829   17    0.945
#>     x20               0.326    0.036    9.168    0.000   14.124   15    0.516
#>   f2 =~                                                                      
#>     x1                1.000                                                  
#>     x2                0.749    0.029   25.764    0.000    9.678   17    0.917
#>     x3                0.692    0.028   24.763    0.000    5.940   17    0.994
#>     x4                0.650    0.026   24.977    0.000   18.153   17    0.379
#>     x5                0.613    0.027   22.548    0.000   17.855   17    0.398
#>     x15               0.378    0.038   10.087    0.000    9.591   15    0.845
#>   f3 =~                                                                      
#>     x16               1.000                                                  
#>     x20               0.630    0.038   16.631    0.000   14.124   15    0.516
#>     x17               0.838    0.033   25.139    0.000   27.901   17    0.046
#>     x18               0.744    0.033   22.622    0.000   15.285   17    0.575
#>     x19               0.680    0.032   20.958    0.000   24.068   17    0.118
#>   f4 =~                                                                      
#>     x14               1.000                                                  
#>     x15               0.906    0.054   16.889    0.000    9.591   15    0.845
#>     x11               1.372    0.053   26.036    0.000   31.750   17    0.016
#>     x12               1.079    0.049   22.053    0.000   29.818   17    0.028
#>     x13               1.066    0.046   23.061    0.000   24.544   17    0.105
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     x1                0.000                              
#>     x10              -0.021    0.026   -0.797    0.425   
#>     x11              -0.002    0.036   -0.062    0.950   
#>     x12              -0.029    0.034   -0.860    0.390   
#>     x13              -0.016    0.032   -0.514    0.607   
#>     x14               0.000                              
#>     x15              -0.016    0.029   -0.540    0.589   
#>     x16               0.000                              
#>     x17               0.024    0.029    0.827    0.408   
#>     x18               0.032    0.030    1.065    0.287   
#>     x19               0.043    0.029    1.476    0.140   
#>     x2               -0.006    0.028   -0.199    0.842   
#>     x20               0.041    0.029    1.390    0.165   
#>     x3               -0.037    0.027   -1.392    0.164   
#>     x4                0.007    0.025    0.271    0.786   
#>     x5               -0.016    0.026   -0.590    0.555   
#>     x6                0.000                              
#>     x7                0.030    0.027    1.102    0.270   
#>     x8               -0.021    0.026   -0.792    0.428   
#>     x9               -0.002    0.028   -0.070    0.944   
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     f1                1.007                              
#>     f2                1.049                              
#>     f3                0.924                              
#>     f4                0.525                              
#>     x1                0.227                              
#>     x10               0.240                              
#>     x11               0.210                              
#>     x12               0.298                              
#>     x13               0.252                              
#>     x14               0.217                              
#>     x15               0.258                              
#>     x16               0.314                              
#>     x17               0.214                              
#>     x18               0.246                              
#>     x19               0.296                              
#>     x2                0.267                              
#>     x20               0.263                              
#>     x3                0.256                              
#>     x4                0.217                              
#>     x5                0.249                              
#>     x6                0.220                              
#>     x7                0.260                              
#>     x8                0.199                              
#>     x9                0.272                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2                0.480                              
#>     f3                0.475                              
#>     f4                0.379                              
#>   f2 ~~                                                  
#>     f3                0.461                              
#>     f4                0.426                              
#>   f3 ~~                                                  
#>     f4                0.363                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

We can see that MIIVefa was able to recover the exact data structure in the DGM, including the two crossloading variables x15 and x20. One of the main differences between the output and that from most other EFA approaches is the simplicity of the final model. Because only relevant factor loadings are included in the final model, it does not require additional subjective factor loading trimming for interpretation.

Simulation 2: allowing the inclusion of correlated errors

One of the advantages of MIIVefa over traditional EFA is that it allows the specification of correlated errors in the model search procedure. For example, if we had measures of the same question across different time points, we can allow for their errors to correlate. We use a simple 2 factor 8 variable model with only one variable (x8) cross-loading on both factors, except now x1-4 have correlated errors with their corresponding errors of the same measures x5-x8 at the second point in time. The code to generate this simulation is as follows:

seed <- 1234 #for replication purpose
#generate latent factor values
eta <- rmnorm(n=500, 
              mean = c(0,0), 
              varcov = matrix(c(1,.5,
                                .5,1), nrow = 2))
#generate errors
seed <- 1234 
CE <- 0.15
e <- rmnorm(n=500,
            mean = rep(0,8),
            varcov =  matrix(rbind(c(.25, 0, 0, 0, CE, 0, 0, 0),
                                   c(0, .25, 0, 0, 0, CE, 0, 0),
                                   c(0, 0, .25, 0, 0, 0, CE, 0),
                                   c(0, 0, 0, .25, 0, 0, 0, CE),
                                   c(CE, 0, 0, 0, .25, 0, 0, 0),
                                   c(0, CE, 0, 0, 0, .25, 0, 0),
                                   c(0, 0, CE, 0, 0, 0, .25, 0),
                                   c(0, 0, 0, CE, 0, 0, 0, .25)), nrow=8, ncol=8))
#factor loading matrix
lambda <- matrix(c(1,0,
                   .8,0,
                   .7,0,
                   .6,0,
                   0,1,
                   0,.8,
                   0,.7,
                   .4,.6), nrow = 8, byrow = T)
#obtain observed variable values
sim2 <- eta %*% t(lambda) + e
#create column names
colnames(sim2) <- paste0("x", 1:ncol(sim2))
#make it a data frame
sim2 <- as.data.frame(sim2)

Again, because this example just adds correlated errors between observed variables to the workflow example, the only difference in the code is the variance-covariance matrix for observed variable errors. The code and the recovered model when running MIIVefa omitting these correlated errors is as follows:

miivefa(sim2, .01) 
#> No latent variables found.
#> $model
#> [1] "f1=~x5\nf2=~x8\nf3=~x2\nf4=~x3\nf5=~x1\nf6=~x7\nf7=~x6\nf8=~x4"
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

A 8 factor model that each variable was loaded on its own factor was recovered, which is very different from the true DGM. Because no common factor was found among any of the factors, a warning message that `No latent variables found.’ was reported. However, if we knew that variables x1 to x4 and x5 to x8 were actually the same measures taken from the same people at different time points, we would have indicated that in the model search procedure, and the code and recovered factor loadings are as follows:

miivefa(sim2, .01,
    correlatedErrors = 'x1~~x5
        x2~~x6
        x3~~x7
        x4~~x8') 
#> $model
#> [1] "f1=~x1+x2+x3+x4+x8\nf2=~x5+x6+x7+x8\nx1~~x5\n        x2~~x6\n        x3~~x7\n        x4~~x8"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    500
#> Number of equations                                                         6
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     x1                1.000                                                  
#>     x2                0.773    0.033   23.543    0.000    0.745    3    0.862
#>     x3                0.688    0.031   21.842    0.000    7.633    3    0.054
#>     x4                0.607    0.031   19.595    0.000    4.367    3    0.224
#>     x8                0.402    0.040    9.957    0.000    6.120    2    0.047
#>   f2 =~                                                                      
#>     x5                1.000                                                  
#>     x8                0.586    0.038   15.336    0.000    6.120    2    0.047
#>     x6                0.770    0.030   25.933    0.000    1.679    3    0.642
#>     x7                0.662    0.029   22.669    0.000    2.094    3    0.553
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     x1                0.000                              
#>     x2               -0.016    0.029   -0.549    0.583   
#>     x3               -0.009    0.027   -0.324    0.746   
#>     x4                0.021    0.027    0.755    0.450   
#>     x5                0.000                              
#>     x6                0.049    0.028    1.768    0.077   
#>     x7                0.021    0.028    0.753    0.451   
#>     x8                0.030    0.031    0.957    0.339   
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     f1                0.961                              
#>     f2                1.095                              
#>     x1                0.270                              
#>     x2                0.247                              
#>     x3                0.256                              
#>     x4                0.274                              
#>     x5                0.225                              
#>     x6                0.261                              
#>     x7                0.284                              
#>     x8                0.277                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2                0.507                              
#>   x1 ~~                                                  
#>     x5                0.163                              
#>   x2 ~~                                                  
#>     x6                0.134                              
#>   x3 ~~                                                  
#>     x7                0.161                              
#>   x4 ~~                                                  
#>     x8                0.174                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

After including the pairs of correlated errors in the model search procedure, MIIVefa was able to recover the true DGM correctly, even including the crossloading of x8 on both factors.

Simulation 3: identifying unrelated variables

A third example is similar to Simulation 2. The correlated errors between variables are excluded but two additional extra variables that do not load on any factors in the true DGM are now included. They are included to demonstrate the capability of the algorithm to differentiate them from the rest of the variables. The data are generated as:

seed <- 1237 #for replication purpose
#generate latent factor values
eta <- rmnorm(n=500, 
              mean = c(0,0), 
              varcov = matrix(c(1,.5,
                                .5,1), nrow = 2))
#generate residuals
seed <- 1237
e <- rmnorm(n=500,
            varcov =  diag(.25, nrow = 10))
#factor loading matrix
lambda <- matrix(c(1,0,
                   .8,0,
                   .7,0,
                   .6,0,
                   0,1,
                   0,.8,
                   0,.7,
                   .4,.6,
                   0,0,
                   0,0), nrow = 10, byrow = T)
#obtain observed variable values
sim3 <- eta %*% t(lambda) + e
#create column names
colnames(sim3) <- paste0("x", 1:ncol(sim3))
#make it a data frame
sim3 <- as.data.frame(sim3)

The zero factor loadings are represented by the zeros in the Lambda matrix. The code to run MIIVefa} and the output are as follows:

miivefa(sim3, .01)
#> $model
#> [1] "f1=~x1+x2+x3+x4+x8\nf2=~x5+x6+x7+x8\nf3=~x10\nf4=~x9"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    500
#> Number of equations                                                         6
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     x1                1.000                                                  
#>     x2                0.767    0.032   24.024    0.000    8.846    7    0.264
#>     x3                0.713    0.030   23.963    0.000    4.561    7    0.713
#>     x4                0.601    0.030   20.214    0.000    7.115    7    0.417
#>     x8                0.418    0.035   12.113    0.000    7.178    5    0.208
#>   f2 =~                                                                      
#>     x5                1.000                                                  
#>     x8                0.550    0.037   14.814    0.000    7.178    5    0.208
#>     x6                0.796    0.035   22.591    0.000    6.959    7    0.433
#>     x7                0.691    0.033   20.903    0.000    5.279    7    0.626
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     x1                0.000                              
#>     x2                0.032    0.028    1.162    0.245   
#>     x3                0.057    0.026    2.185    0.029   
#>     x4                0.001    0.027    0.040    0.968   
#>     x5                0.000                              
#>     x6               -0.008    0.028   -0.275    0.783   
#>     x7               -0.019    0.028   -0.671    0.502   
#>     x8                0.029    0.027    1.077    0.282   
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     f1                0.949                              
#>     f2                0.882                              
#>     f3                0.086                              
#>     f4                0.089                              
#>     x1                0.190                              
#>     x10               0.158                              
#>     x2                0.281                              
#>     x3                0.243                              
#>     x4                0.278                              
#>     x5                0.247                              
#>     x6                0.251                              
#>     x7                0.253                              
#>     x8                0.257                              
#>     x9                0.166                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2                0.394                              
#>     f3               -0.009                              
#>     f4                0.049                              
#>   f2 ~~                                                  
#>     f3               -0.006                              
#>     f4               -0.016                              
#>   f3 ~~                                                  
#>     f4               -0.012                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

From the output we can see that the true DGM for x1 to x8 was still correctly recovered, and the algorithm was able to put aside the two solitary variables, x9 and x10, on two separate factors. This example demonstrates the ability of MIIVefa to not only detect solitary variables, but to also still correctly recover the true DGM in the presence of those solitary variables.

Empirical Examples

Empirical example 1:

The first empirical example comes from Holzinger and Swineford (1937), which contains mental ability test scores of seventh- and eighth- grade children from two schools. The original dataset has a total of 26 test scores but a subset of 9 test scores is more widely known in the literature and it is usually used to demonstrate the usage and performance of CFA. We used this 9 test score subset available in lavaan (Rosseel, 2012).

library(lavaan)
#> This is lavaan 0.6-19
#> lavaan is FREE software! Please report any bugs.
holzingerdata <- lavaan::HolzingerSwineford1939[,7:15]
head(holzingerdata)
#>         x1   x2    x3       x4   x5        x6       x7   x8       x9
#> 1 3.333333 7.75 0.375 2.333333 5.75 1.2857143 3.391304 5.75 6.361111
#> 2 5.333333 5.25 2.125 1.666667 3.00 1.2857143 3.782609 6.25 7.916667
#> 3 4.500000 5.25 1.875 1.000000 1.75 0.4285714 3.260870 3.90 4.416667
#> 4 5.333333 7.75 3.000 2.666667 4.50 2.4285714 3.000000 5.30 4.861111
#> 5 4.833333 4.75 0.875 2.666667 4.00 2.5714286 3.695652 6.30 5.916667
#> 6 5.333333 5.00 2.250 1.000000 3.00 0.8571429 4.347826 6.65 7.500000

The 9 test scores in this empirical example (N=301) are scores for tests on: visual perception (X1), cubes (X2), lozenges (X3), paragraph comprehension (X4), sentence completion (X5), word meaning (X6), speeded addition (X7), speeded counting of dots (X8), and speeded discrimination on straight and curved capitals (X9). The widely used CFA model for it is a hypothesized 3 factor model of mental abilities on visual, textual, and speed tasks. MIIVefa recovered an almost identical model to the hypothesized 3 factor model, with the only difference being it also recovered one crossloading: speeded discrimination on straight and curved capitals on both the speed the visual factor. The code to run MIIVefa and the output containing both the recovered model and parameter estimates are as follow:

miivefa(holzingerdata, sigLevel = .01, 'sargan+factorloading_R2')
#> $model
#> [1] "f1=~x6+x4+x5\nf2=~x1+x2+x3+x9\nf3=~x8+x9+x7"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    301
#> Number of equations                                                         6
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     x6                1.000                                                  
#>     x4                1.079    0.064   16.909    0.000    6.251    6    0.396
#>     x5                1.197    0.071   16.768    0.000   12.279    6    0.056
#>   f2 =~                                                                      
#>     x1                1.000                                                  
#>     x2                0.632    0.099    6.378    0.000    7.528    6    0.275
#>     x3                0.727    0.097    7.491    0.000   15.556    6    0.016
#>     x9                0.368    0.088    4.162    0.000    2.207    4    0.698
#>   f3 =~                                                                      
#>     x8                1.000                                                  
#>     x9                0.665    0.107    6.212    0.000    2.207    4    0.698
#>     x7                0.767    0.122    6.267    0.000   21.817    6    0.001
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     x1                0.000                              
#>     x2                2.970    0.494    6.016    0.000   
#>     x3               -1.337    0.483   -2.768    0.006   
#>     x4                0.702    0.149    4.715    0.000   
#>     x5                1.724    0.166   10.398    0.000   
#>     x6                0.000                              
#>     x7               -0.054    0.679   -0.079    0.937   
#>     x8                0.000                              
#>     x9               -0.115    0.583   -0.198    0.843   
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     f1                0.843                              
#>     f2                0.792                              
#>     f3                0.630                              
#>     x1                0.567                              
#>     x2                1.106                              
#>     x3                0.839                              
#>     x4                0.372                              
#>     x5                0.446                              
#>     x6                0.356                              
#>     x7                0.768                              
#>     x8                0.392                              
#>     x9                0.547                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2                0.371                              
#>     f3                0.156                              
#>   f2 ~~                                                  
#>     f3                0.217                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

MIIVefa recovered the general three factor structure. The crossloading of the speeded discrimination on straight and curved capitals task for both speed and visual ability was an interesting but not surprising recovery, as it is indeed a test that involves both mental abilities of differentiating between distinct types of capitals visually and being able to do so quickly.

Empirical example 2

The second empirical example comes from Bergh et al. (2016) and it consists items measuring openness, agreeableness, and prejudice against minorities. The dataset is available in the R package MPsychoR (Mair, 2020) and we used a subset of it excluding demographics.

The 10 items in this example (N=861) are 3 agreeableness indicators (A1-A3), 3 openness indicators (O1-O3), and 4 prejudice indicators: ethnic prejudice (EP), sexism (SP), sexual prejudice against gays and lesbians (HP), and prejudice against people with mentally disabilities (DP). The four prejudice items were hypothesized as indicators to the generalized prejudice (GP) factor (Bergh et al., 2016). This dataset was also used in Mair (2018, p.49-52) to demonstrate multilevel CFA on the generalized prejudice factor. Here we included all 10 variables to run MIIVefa. The code and output are as follows:

library(MPsychoR)
data("Bergh")
miivefa(Bergh[,1:10], .01, 'sargan+factorloading_R2') 
#> $model
#> [1] "f1=~O2+O1+O3+HP\nf2=~EP+SP+DP+HP+A2\nf3=~A3+A1+A2"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    861
#> Number of equations                                                         7
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     O2                1.000                                                  
#>     O1                1.063    0.040   26.280    0.000   15.887    7    0.026
#>     O3                1.217    0.043   28.139    0.000    7.207    7    0.408
#>     HP               -0.753    0.208   -3.613    0.000   12.292    5    0.031
#>   f2 =~                                                                      
#>     EP                1.000                                                  
#>     HP                0.634    0.158    4.016    0.000   12.292    5    0.031
#>     SP                0.879    0.051   17.394    0.000   17.013    7    0.017
#>     DP                0.753    0.040   18.924    0.000   17.801    7    0.013
#>     A2               -0.189    0.027   -6.905    0.000    2.129    5    0.831
#>   f3 =~                                                                      
#>     A3                1.000                                                  
#>     A2                0.772    0.033   23.704    0.000    2.129    5    0.831
#>     A1                0.958    0.030   31.768    0.000   16.801    7    0.019
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     A1               -0.091    0.111   -0.817    0.414   
#>     A2                1.336    0.156    8.567    0.000   
#>     A3                0.000                              
#>     DP                0.560    0.081    6.908    0.000   
#>     EP                0.000                              
#>     HP                2.583    0.979    2.637    0.008   
#>     O1               -0.159    0.142   -1.122    0.262   
#>     O2                0.000                              
#>     O3               -0.644    0.152   -4.243    0.000   
#>     SP                0.366    0.103    3.559    0.000   
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     A1                0.071                              
#>     A2                0.067                              
#>     A3                0.035                              
#>     DP                0.125                              
#>     EP                0.224                              
#>     HP                2.108                              
#>     O1                0.075                              
#>     O2                0.078                              
#>     O3                0.051                              
#>     SP                0.248                              
#>     f1                0.142                              
#>     f2                0.283                              
#>     f3                0.196                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2               -0.112                              
#>     f3                0.043                              
#>   f2 ~~                                                  
#>     f3               -0.104                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

MIIVefa recovered a 3 factor model that generally separated openness, agreeable, and generalized prejudice. It also recovered two crossloadings. The first one is HP being crossloaded negatively on the openness factor. The other prejudice indicators, however, loaded solely on the GP factor. This crossloading detection suggested that although being more open appeared to be associated with a lower level of prejudice against people with minority sexual orientations, openness was not necessarily related to a lower level of other types prejudice. This could have meaningful empirical implications such as that the other types of prejudice are likely complicated by other factors. The second crossloading is the second agreeableness indicator being crossloaded negatively on the GP factor. This indicated that this agreeableness indicators is closely related to the GP factor. However, the specific questions/items for the agreeableness and openness indicators were not provided.

Empirical example 3

The third empirical example is taken from Sidanius and Pratto (2001) which measures Social Dominance Orientation (SDO) across five years. The dataset is again available in the R package MPsychoR (Mair, 2020) and we used a subset of it of items from only two years. The subset (N =612) contains a total of 8 variables, which are consisted of 4 items taken from year 1996 and 2000: ‘It’s probably a good thing that certain groups are at the top and other groups are at the bottom’ (I1), ‘Inferior groups should stay in their place’ (I2), ‘We should do what we can to equalize conditions for different groups (reversed)’ (I3), and ‘Increased social equality is beneficial to society (reversed)’ (I4). The code and recovered model are as follows when we first omit the correlations between the same items taken at different years:

data("SDOwave")
sdowavedata <- SDOwave[,
c(paste0(c('I1.','I2.','I3.','I4.'), 1996), 
paste0(c('I1.','I2.','I3.','I4.'), 2000))]
miivefa(sdowavedata, .01)
#> $model
#> [1] "f1=~I4.2000+I3.2000\nf2=~I4.1996\nf3=~I2.1996\nf4=~I1.2000\nf5=~I1.1996\nf6=~I3.1996\nf7=~I2.2000"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    612
#> Number of equations                                                         1
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     I4.2000           1.000                                                  
#>     I3.2000           1.066    0.064   16.578    0.000   10.749    5    0.057
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     I3.2000           0.204    0.146    1.401    0.161   
#>     I4.2000           0.000                              
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     I1.1996           0.977                              
#>     I1.2000           0.897                              
#>     I2.1996           0.834                              
#>     I2.2000           0.555                              
#>     I3.1996           1.071                              
#>     I3.2000           0.632                              
#>     I4.1996           0.963                              
#>     I4.2000           0.461                              
#>     f1                1.212                              
#>     f2                0.888                              
#>     f3                0.501                              
#>     f4                0.690                              
#>     f5                0.930                              
#>     f6                1.186                              
#>     f7                0.218                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   f1 ~~                                                  
#>     f2                0.694                              
#>     f3                0.270                              
#>     f4                0.479                              
#>     f5                0.284                              
#>     f6                0.824                              
#>     f7                0.409                              
#>   f2 ~~                                                  
#>     f3                0.517                              
#>     f4                0.362                              
#>     f5                0.653                              
#>     f6                1.647                              
#>     f7                0.257                              
#>   f3 ~~                                                  
#>     f4                0.431                              
#>     f5                0.971                              
#>     f6                0.506                              
#>     f7                0.321                              
#>   f4 ~~                                                  
#>     f5                0.564                              
#>     f6                0.299                              
#>     f7                0.601                              
#>   f5 ~~                                                  
#>     f6                0.537                              
#>     f7                0.260                              
#>   f6 ~~                                                  
#>     f7                0.237                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

We can see that the final recovered 7 factor model was hard to interpret, similar to what we see in Simulation 2 where most variables were placed in their own latent factors. However, after we included the four pairs of correlated errors, the recovered model was very different. The code and MIIVefa output are as follows:

miivefa(sdowavedata, .01, 
        correlatedErrors =
        'I1.1996~~I1.2000
        I2.1996~~I2.2000
        I3.1996~~I3.2000
        I4.1996~~I4.2000')
#> $model
#> [1] "f1=~I4.1996+I3.1996\nf2=~I4.2000+I3.2000\nf3=~I2.1996+I1.1996\nf4=~I1.2000+I2.2000\nI1.1996~~I1.2000\n        I2.1996~~I2.2000\n        I3.1996~~I3.2000\n        I4.1996~~I4.2000"
#> 
#> $fit
#> MIIVsem (0.5.8) results 
#> 
#> Number of observations                                                    612
#> Number of equations                                                         4
#> Estimator                                                           MIIV-2SLS
#> Standard Errors                                                      standard
#> Missing                                                              listwise
#> 
#> 
#> Parameter Estimates:
#> 
#> 
#> STRUCTURAL COEFFICIENTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   Sargan   df   P(Chi)
#>   f1 =~                                                                      
#>     I4.1996           1.000                                                  
#>     I3.1996           0.886    0.067   13.235    0.000    5.389    3    0.145
#>   f2 =~                                                                      
#>     I4.2000           1.000                                                  
#>     I3.2000           1.054    0.087   12.082    0.000    7.354    3    0.061
#>   f3 =~                                                                      
#>     I2.1996           1.000                                                  
#>     I1.1996           1.199    0.127    9.472    0.000    6.404    3    0.094
#>   f4 =~                                                                      
#>     I1.2000           1.000                                                  
#>     I2.2000           0.786    0.085    9.197    0.000    6.681    3    0.083
#> 
#> INTERCEPTS:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     I1.1996           0.036    0.218    0.166    0.868   
#>     I1.2000           0.000                              
#>     I2.1996           0.000                              
#>     I2.2000          -0.086    0.175   -0.493    0.622   
#>     I3.1996           0.580    0.167    3.465    0.001   
#>     I3.2000           0.229    0.194    1.183    0.237   
#>     I4.1996           0.000                              
#>     I4.2000           0.000                              
#> 
#> VARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>     I1.1996           0.745                              
#>     I1.2000           0.821                              
#>     I2.1996           0.525                              
#>     I2.2000           0.302                              
#>     I3.1996           0.755                              
#>     I3.2000           0.705                              
#>     I4.1996           0.026                              
#>     I4.2000           0.417                              
#>     f1                1.855                              
#>     f2                1.202                              
#>     f3                0.806                              
#>     f4                0.764                              
#> 
#> COVARIANCES:
#>                    Estimate  Std.Err  z-value  P(>|z|)   
#>   I1.1996 ~~                                             
#>     I1.2000           0.136                              
#>   I2.1996 ~~                                             
#>     I2.2000           0.056                              
#>   I3.1996 ~~                                             
#>     I3.2000           0.133                              
#>   I4.1996 ~~                                             
#>     I4.2000          -0.173                              
#>   f1 ~~                                                  
#>     f2                0.798                              
#>     f3                0.522                              
#>     f4                0.338                              
#>   f2 ~~                                                  
#>     f3                0.251                              
#>     f4                0.507                              
#>   f3 ~~                                                  
#>     f4                0.339                              
#> 
#> attr(,"class")
#> [1] "miivefa" "list"

Now the recovered model became a four factor model that not only separated the same items from different years into different factors, but also separated I1, I2 and I3, I4. This is an interesting recovery, because I3 and I4 are actually reversed coded items. This could potentially imply that not wanting to actively get involved to increase social equality does NOT necessarily equal to wanting to assert social dominance.

References

  • Bergh, R., Akrami, N., Sidanius, J., & Sibley, C. G. (2016). Is group membership necessary for understanding generalized prejudice? a re-evaluation of why prejudices are interrelated. Journal of personality and social psychology, 111 (3), 367.

  • Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2 (1), 41–54.

  • Mair, P. (2018). Modern psychometrics with r. Springer.

  • Mair, P. (2020). Mpsychor: Modern psychometrics with r [R package version 0.10-8]. https://cran.r-project.org/package=MPsychoR

  • Rosseel, Y. (2012). Lavaan: An r package for structural equation modeling. Journal of statistical software, 48, 1–36.

  • Sidanius, J., & Pratto, F. (2001). Social dominance: An intergroup theory of social hierarchy and oppression. Cambridge University Press